
Shrouded Mirror

Neural Network Based Rendering
in Interactive Environments

Johannes C. Mayer

Bachelor thesis booklet in the studies of GAME DESIGN

The work constitutes a technical design work piece

Shrouded Mirror
Neural Network Based Rendering

in Interactive Environments

Submitted by

Johannes C. Mayer, 553087

on January 30, 2019

First Examiner: Prof. Thomas Bremer

Second Examiner: Prof. Susanne Brandhorst

Hochschule für Technik und Wirtschaft Berlin

Fachbereich Gestaltung und Kultur

I

Exposé

In my bachelor thesis I want to evaluate how neural networks can

be used in an interactive context to visualize an environments

state. For this the project is structured into three phases. First

create a simple implementation of the algorithms required, then

explore possible applications, third develop the most promising

application further.

Neural networks have the ability to learn an abstract represen-

tations of the data they are being trained on. This representation

can then be used to generate new output. In this work a net-

work is used that is trained on data pairs that consist of an Image

and the corresponding coordinates where the image was taken.

The network can now, given a set of scene coordinates, render

an image that approximates what a camera would render when

placed at the provided coordinates. This means that this tech-

nique can be used to create a second visual representation of

an environment inside a game engine.

Interesting possibilities open when integrating this network into

an interactive environment. One example would be, that the

player only sees the output of the network while the underlying

“real” state of the environment is hidden from him.

II

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scope . 2

2 Background 3

2.1 Neural networks . 3

2.1.1 Neuron . 3

2.1.2 Multilayer network 4

2.1.3 Training . 6

2.2 Differential calculus . 7

2.2.1 Univariate . 7

2.2.2 Multivariate . 8

2.3 GQN Network . 9

2.3.1 Definition . 9

2.3.2 Usage . 10

3 Workflow 12

3.1 Functional . 12

3.2 Top down . 13

3.3 Walking sim . 13

3.4 Object morphing . 16

4 Maze Game Systems 24

4.1 Audio . 24

4.2 Sound spectrum analyzing materials 24

4.3 Checkpoints . 25

4.4 Enemies . 25

4.4.1 Speeder . 28

III

CONTENTS CONTENTS

4.4.2 Invisible champer 28

4.4.3 DumDum . 28

4.5 Player interaction . 33

4.5.1 Laser . 33

4.5.2 Smoke balls . 33

5 Neural Network Systems 37
5.1 Data generation . 37

5.2 Model . 38

5.2.1 Saving and loading of network 38

5.2.2 Data Preprocessing 39

5.3 IPC . 39

5.4 Rendering . 40

5.4.1 Smoke ball rendering 43

6 Further work 44
6.1 Interactive data generation 44

6.2 Network state blending 45

6.3 Model improvements 45

6.3.1 Rendering nonstatic objects 45

6.3.2 Interactive environment modeling 46

7 Reflection 47
7.1 Project . 47

7.2 Workflow Evaluation . 48

7.3 Other directions . 49

7.3.1 GQN and reinforcement learning 49

7.3.2 Synthesized game 50

8 Resources 52
8.1 Software . 52

8.2 Unity packages . 52

8.3 Python packages . 53

8.4 Textures . 54

IV

1 Introduction

Shrouded mirror is an experimental experience, where the player

sees the world through the eyes of a neural network. The player

has to move through an environment, collect checkpoints and

avoids enemies. Each type of entity emits a unique audio signal,

creating a distinctive soundscape.

1.1 Motivation

Using the representation a neural network has learned of an en-

vironment to present the environment state to the player, in an

interesting way, is a nearly unexplored avenue. In this work I ex-

plore one way neural networks can be utilized in interactive ex-

periences. I use a neural network that has learned how to render

an image of the environment out of a certain position and an-

gle. The rendered images are then used as the main information

stream presented to the player.

1

1.2. SCOPE CHAPTER 1. INTRODUCTION

1.2 Scope

The following items where developed during the bachelor

project:

• Data generation environment

• Data processing pipeline

• Scene rendering neural network model and training pipeline

• System to send network output to Unity

• Merging of network output with unity rendered objects

• Several exploratory prototypes

• One extended Prototype (Maze game)

2

2 Background

2.1 Neural networks

To give a better intuition for how neural networks work and how

they are used in this project, a brief overview follows describing

the components necessary to build a simple neural network.

In brief a neural network is computational structure made

up of multiple units called neurons that can adapt their output

based on data.

2.1.1 Neuron

A simple neuron can be defined as:

Nw,b(x) = σ

(
n∑

i=1

(
wixi

)
+ b

)

= σ(w · x+ b)

(2.1)

Where x ∈ Rn is a vector containing all inputs, w ∈ Rn a vector

containing the neurons weights, b ∈ R is the bias, n ∈ Z is the

number of inputs and σ is a nonlinear function refereed to as the

activation function of the neuron. σ is often set to be the rectified

linear unit ReLU(x) = max(0, x).

Intuitively a neuron performs a weighted sum over its inputs

adds a bias and applies an activation function to the result to

3

2.1. NEURAL NETWORKS CHAPTER 2. BACKGROUND

calculate the final output. The bias can be thought of as a thresh-

old, determining—if σ = ReLU—how high the sum of inputs has to

be, before the output becomes non 0. Figure 2.1 shows, how we

can think of a neuron as having connections, where the entirety

of the connections form the input vector.

2.1.2 Multilayer network

As seen in fig. 2.2 a neural network work can be formed out of

neurons by first organizing multiple neurons into a layers1 and

then connecting multiple layers together. To get a dense net-

work each neuron in a layer gets as inputs the outputs of all the

neurons in the previous2 layer. The first layer is used to provide the

input to the network. We can simply set the output values of the

neurons to what we like to have as inputs to the network. To get

the output of the network we read of what values the neurons in

the final layer have after the network has been evaluated. The

layers between the first and last layer are called hidden layers.

This is because it is normally not necessary to inspect directly

what values or parameters these neurons have.

Normally in an implementations of a densely connected neu-

ral network the computer performs multiple matrix operations to

compute the output. This is usually more efficient because many

matrix operations, in implementations we would use, are heavily

optimized. Equation (2.2) shows how to compute the values for

the first hidden layer of the network in fig. 2.2 this way. The σ is

applied to each element of the vector.

1In fig. 2.2 a layer is a collection of neurons that line up vertically.
2The layer to the left

4

CHAPTER 2. BACKGROUND 2.1. NEURAL NETWORKS

σ

(
3∑

i=1

(
wixi

)
+ b

)

x1

x2

x3

w
1

w2

w3

Figure 2.1: Graphical representation of a neuron with 3 inputs

I

I

I

N

N

N

N

N

N

N

N

N

Input Hidden units Output

Figure 2.2: Multilayer neural network structure

5

2.1. NEURAL NETWORKS CHAPTER 2. BACKGROUND

Hidden1(x) = σ

(
w00 w01 w02

w10 w11 w12

w20 w21 w22

w30 w31 w32



x0

x1

x2

+


b0

b1

b2

b3


)

(2.2)

2.1.3 Training

Before we start training we need to set our weights and biases

to some start values. The bias is usually initialized to 0 and the

weights can be initialized to small random values if the network

is small enough. More complicated initialization strategies are

needed for the weights if we are dealing with a big network (Glo-

rot and Bengio 2010; Ioffe and Szegedy 2015).

Normally we are interested in finding specific weight vectors

and biases for neurons that make the network perform some spe-

cific task like image classification.

We might want to know if an image pictures an orange or an

apple. For this task we can use a network with one output neuron,

where that neurons value should be one if we feed in a picture

of an orange and zero if we feed in a picture of an apple. If

we now feed in a picture, the network gives back some arbitrary

numerical value that will only by chance predict the correct fruit.

This is because the network is not trained yet.

To train the network we first need to define a loss function. This

function returns a numerical value that represents how bad the

network is. For images we may use the means square error func-

tion as shown in eq. (2.3). There x is the output of the network and

y is our desired output.

MSE(x,y) =
1

n

n∑
i=1

(xi − yi)
2 (2.3)

6

CHAPTER 2. BACKGROUND 2.2. DIFFERENTIAL CALCULUS

To train the network we need a dataset of input and desired

output pairs. To create a dataset we first need a bunch of images

of apples and oranges. Then we pair each image with the num-

ber one if the image depicts an orange and the number zero if

the image depicts an apple.

Now if we feed in an image into the network we can measure

how bad the network is using the loss function. To improve the

output of the network, we train it by adjusting our weights and

biases proportionally to the negative gradient of the loss function

with respect to the weights and biases using calculus.

2.2 Differential calculus

Differential Calculus is an area of mathematics that studies how a

functions output changes with regard to tiny nudges to its inputs.

2.2.1 Univariate

The derivative can intuitively be interpreted as giving the value of

how fast the output of a function changes as well as the direction

of change3 at a specific point if we start to increase x. It is defined

as:

df(x)

dx
= lim

dx→0

f(x+ dx)− f(x)

dx
(2.4)

The limdx→0 means, that we don’t use a specific value

for dx but take the value the equation approaches when dx

approaches 0 without dx ever becoming 0.

This means that the derivative can be used to find out how a

function changes locally. If the derivative is positive and we in-

crease the input to the function, at the point the derivative was
3The output either increases or decreases if we increase x.

7

2.2. DIFFERENTIAL CALCULUS CHAPTER 2. BACKGROUND

evaluated, the output increases in size. This increase is propor-

tional to the magnitude of the derivative. The same logic applies

when the derivative is negative.

2.2.2 Multivariate

The same can be applied to functions with multiple parameters:

∂f(x1, x2)

∂x1
= lim

∂x1→0

f(x1 + ∂x1, x2)− f(x1, x2)

∂x1

∂f(x1, x2)

∂x2
= lim

∂x2→0

f(x1, x2 + ∂x2)− f(x1, x2)

∂x2

(2.5)

Here each equation defines as how much the output of the

function changes locally when the corresponding input param-

eter to the function increases. The gradient of a function is a

vector containing the derivative information with respect to each

parameter. The gradient of f(x1, x2) is defined as:

∇f(x1, x2) =

∂f(x1,x2)
∂x1

∂f(x1,x2)
∂x2

 (2.6)

Calculating the gradient of the loss gives us the information of

how we should adjust our weights and biases to improve the loss

i.e. improve the output of the network. Normally we scale the

gradient by some learning rate η ∈ R.

8

CHAPTER 2. BACKGROUND 2.3. GQN NETWORK

2.3 GQN Network

2.3.1 Definition

A Generative Query Network (Eslami et al. 2018) is a type of neu-

ral network architecture that can learn to render an image from

a queried viewpoint in an environment. The output of the net-

work is then, in the ideal case, identical to an image a camera

would produce when placed at the same queried viewpoint in

the same environment.

The network can perform this rendering even for environments

that where not seen during training. This works because the net-

work constructs a representation of the current environment for

each render (fig. 2.3). To generate this representation we need

to input a few4 image-coordinate pairs into the network. These

image-coordinate pairs need to be of the environment that we

want the network to render. The coordinate that is paired with an

image denotes where5 that image was taken.

During training the network has learned how to encode these

image-coordinate pairs into an abstract representation of the en-

vironment. Also, the network learned how to use this representa-

tion to render an image from a queried viewpoint. The closer

the unseen environment is to environments seen during training,

in terms of objects in the environment and their properties, the

better the network is expected to perform. One thing the net-

work is very good at is to learn where objects, that appeared in

the training set, are placed in an environment, even if an object

was never observed to be positioned in this particular way in any

environment. To some extend the network is able to correctly ren-

der objects not present in any training environment (Eslami et al.

2018).

4How many images we use is a hyperparameter.
5The coordinate includes the position and rotation.

9

2.3. GQN NETWORK CHAPTER 2. BACKGROUND

The network architecture is shown in fig. 2.3, where I1 denotes

an image of an environment and C1 the position and rotation

where the image was taken. The
⋃

here means concatenation.

All Ri are, as tensors encoded, representations of the environ-

ment. These tensors are summed up element wise over all tensors

so that R has the same dimensionality as Ri. Cq is the coordinate

from which the network should render an Image, z is a vector of

latent variables and Iy is the ground truth image of what a ren-

der form Cq looks like. The encoder and decoder are both neural

networks.

To train the network we feed image-coordinate pairs and

compute the gradient of the loss. For the target output and the

query position we use an image-coordinate pair from the same

environment. With the gradient of the loss we can then update

the network parameters. All (Ii, Ci) and (Iy, Cq) have to be drawn

from the same environment in one evaluation of the network. If

there are multiple (Ii, Ci) input pairs, the same encoder network

is used to encode each of them. The update procedure has to

be repeated many times until the network output reaches the

desired quality.

2.3.2 Usage

This work uses a simplified implementation of the Generative

Query Network.

In this work the architecture of the used neural network differs

from the implementation of the GQN used in the original paper.

Here I use simple dense models for the encoder and decoder that

don’t use random latent variables. This circumvents the necessity

of having to use the evidence lower bound as an optimization

target.

This however limits the networks abilities. It does not take into

10

CHAPTER 2. BACKGROUND 2.3. GQN NETWORK

I1

⋃

C1

Encoder

R1

R2

R3

+ R Decoder

zCq

Predicted image

LossIy

· · ·

· · ·

reuse

reuse

Figure 2.3: GQN architecture

account the inputs, given during inference6, to the same extent

as in the original experiments described in Eslami et al. 2018. The

only meaningful considerations of the inputs of the network, that

where given during inference, were found to be the coloring of

the sky, floor and walls (fig. 3.1). These only worked on static ob-

jects. In the original implementation the network can correctly

infer more properties like object position, rotation, color and tex-

ture on nonstatic7 objects.

Because interesting use cases where found that do not de-

pend on these properties of a GQN network, no more effort was

put into recreating the abilities of the original implementation.

6Producing output without training a network.
7Nonstatic referees to objects that change their position between environ-

ments. An any given environment objects are still static.

11

3 Workflow

In this project I fallowed an iterative prototype workflow, creat-

ing multiple prototypes to evaluate specific ideas. As for imple-

menting different systems needed for the application, I followed

the workflow of researching a single component1 and then im-

plementing it, before beginning further researching efforts.

What fallows is a description of the prototypes developed over

the course of the project. The main prototype, called "maze

game", became the focus of the project after the direction had

been set with the help of the results obtained from previous pro-

totypes. The maze game is described in detail in chapter 4.

3.1 Functional

The goal of the first prototype was to developed the core sys-

tems. The entire data generation- and preprocessing pipeline

and the neural network model where implemented and evalu-

ated. A small level with checkerboard textures was created for

this prototype (fig. 3.1 and fig. 3.2). The sky and wall colors are

variable between environments. An environment is a variation of

a level. In this case, everything but the sky and wall colors stays

constant for each environment, e.g. the walls are always at the

same position in each environment. As fig. 3.1 shows, the network

can adjust its output based on the information that is being fed

in. The network is able to this without retraining. All that needs to

be changed is the inputs to the encoder (fig. 2.3). More informa-

tion on the systems developed in this prototype can be found in

1Such as the Kears functional API, UDP sockets, etc.

12

CHAPTER 3. WORKFLOW 3.2. TOP DOWN

chapter 5.

3.2 Top down

This prototype was used to evaluate the suitability of the network

for a top town game. In this prototype the player has to go from

one colored platform to another while avoiding the red walls.

The challenge should be created by only training the network on

data that is captured by pointing the camera at one of the col-

ored platforms. Training the network on this data resulted only in

making the network output blurry, when the player was not posi-

tioned on a platform (fig. 3.4 and fig. 3.3). Because the prototype

did not present an interesting direction, it was abandoned.

3.3 Walking sim

Here the idea was to present the level to the player through the

neural network to create an interesting visual appearance. I also

experimented with having certain objects only be visible if the

player is at a certain position in the environment (fig. 3.5). This

idea was further explored in the next prototype.

13

3.3. WALKING SIM CHAPTER 3. WORKFLOW

Figure 3.1: The neural network predicts different colors based on
the input data that makes up R. The input pictures are shown to
the right. The network gives output even if no images are fed in
as seen in the last image.

14

CHAPTER 3. WORKFLOW 3.3. WALKING SIM

Figure 3.2: Training data is being captured in the functional pro-
totype level.

15

3.4. OBJECT MORPHING CHAPTER 3. WORKFLOW

3.4 Object morphing

This prototype has a level that is divided into four differently col-

ored platforms (fig. 3.7) that are surrounded by tall pillars. The

coloring of the platforms and the pillars help the player to orient

himself. In the center four different objects are placed (fig. 3.8).

Each of the objects is linked with a different marker group as de-

scribed in section 5.1. The marker groups are shown in fig. 3.6.

There is a marker placed on top of each platform. This means that

if an observation is taken from a specific platform only one of the

four objects is displayed in the center. When the player crosses

from one platform to another the center object is morphed from

one object to another as seen in fig. 3.9. This is probably because

a neural network with a limited amount of parameters cannot

model an instantaneous change in "pixel space".

16

CHAPTER 3. WORKFLOW 3.4. OBJECT MORPHING

Figure 3.3: Top down prototype level as seen in the editor

17

3.4. OBJECT MORPHING CHAPTER 3. WORKFLOW

Figure 3.4: In the top down prototype, the network output gets
blurry when the player walks off a platform.

18

CHAPTER 3. WORKFLOW 3.4. OBJECT MORPHING

Figure 3.5: Certain objects can only be seen, when the player
stands at certain locations.

19

3.4. OBJECT MORPHING CHAPTER 3. WORKFLOW

Figure 3.6: These are the 4 markers (explained in section 5.1) of
the morphing environment. Overlapping areas are differently col-
ored.

20

CHAPTER 3. WORKFLOW 3.4. OBJECT MORPHING

Figure 3.7: Top down view of the level with only one object acti-
vated in the middle

21

3.4. OBJECT MORPHING CHAPTER 3. WORKFLOW

Figure 3.8: The 4 differnt objects in the center of the level

22

CHAPTER 3. WORKFLOW 3.4. OBJECT MORPHING

Figure 3.9: The center object morphs into a different object when
the player crosses from one marker into another.

23

4 Maze Game Systems

In this Prototype the player has to navigate though a maze. All

static objects in the environment are rendered with a neural net-

work. The player has to use the output of the neural network to

navigate through it. There are several enemy types that have to

be avoided or destroyed. Multiple checkpoints have to be col-

lected before the goal is unlocked. By collecting the goal the

player wins the level.

4.1 Audio

In this project I use the Resonance Audio plug-in to simulate spa-

tial sound. This facilitates player orientation. All important ob-

jects and events such as enemies and checkpoints emit a unique

sound, that helps to spatially locate and identify them. A Doppler

effect is used on all audio sources, so that the player perceives

how entities are moving relative to him.

4.2 Sound spectrum analyzing materials

I created a simple sound spectrum analyzing script, that when

attached to an object automatically varies the intensity of the

objects material color based on the current spectrum of the ob-

jects audio source. Parameters are exposed to define ranges for

valid color intensities and to set how the spectrum should be fil-

tered before its intensity is determined.

24

CHAPTER 4. MAZE GAME SYSTEMS 4.3. CHECKPOINTS

4.3 Checkpoints

To beat a level the player has to collect all checkpoints. They are

visualized as green rectangular cuboids that vary their material

using the spectrum analyzing script (fig. 4.1). Periodically a

checkpoint emits a high pitched, slowly decaying ping sound.

Because the sound is specialized with Resonance Audio, the

player can use this audio signal to determine the direction and

distance to a checkpoint. Only one checkpoint is active at a

time, and a new checkpoint only activates if the current one has

been collected. This makes it easier for the player to home in

on the sound. The final checkpoint, refereed to as goal, has the

same audio signal but different visuals (fig. 4.2) and triggers the

game won state when reached.

4.4 Enemies

Enemies in this prototype all follow a simple pattern. They spawn

out of a for the player visible spawn point and move in a straight

line across the map. How they move is different for each enemy

type. Each of them emits a sound that helps to identifies them.

They are all pyramid shaped with the apex pointing in the flight

direction, to give them the association that they are dangerous.

25

4.4. ENEMIES CHAPTER 4. MAZE GAME SYSTEMS

Figure 4.1: Checkpoint cuboid varying material color based on
the current sound

26

CHAPTER 4. MAZE GAME SYSTEMS 4.4. ENEMIES

Figure 4.2: Goal varies its material color based on the current
sound

27

4.4. ENEMIES CHAPTER 4. MAZE GAME SYSTEMS

4.4.1 Speeder

Figure 4.3 shows the simplest enemy, the speeder. He moves for-

ward with a constant velocity. This enemy emits a two sounds.

One can only be heard by the player if the enemy is moving di-

rectly at him. A variation of the speeder exists that moves way

faster and looks different (fig. 4.4). Because of the Doppler effect

applied to the audio sources, the sound emitted feels more dan-

gerous. This is probably because with the Doppler sound you also

hear that it goes really fast.

4.4.2 Invisible champer

This enemy moves just like the speeder. However the champer is

a much harder enemy because he is invisible most of the time.

Periodically he makes a champing sound. Using the spectrum

analyzing script the material of the champer is adjusted to make

him visible for a brief period, every time he emits a sound (fig. 4.5).

4.4.3 DumDum

The DumDum uses a script that analyzes the sound spectrum of

the attached audio source to determine his movement speed.

The audio source loop of the DumDum consists of four short pulses

of sound and a long pause. Each time one of the pulses is played

the DumDum starts to move until the pulse stops. This leads to

the DumDum rapidly jumping forward four times before becom-

ing stationary for brief period of time.

28

CHAPTER 4. MAZE GAME SYSTEMS 4.4. ENEMIES

Figure 4.3: Speeder moves away from his pink spawn point

29

4.4. ENEMIES CHAPTER 4. MAZE GAME SYSTEMS

Figure 4.4: A variation of the speeder that moves faster

30

CHAPTER 4. MAZE GAME SYSTEMS 4.4. ENEMIES

Figure 4.5: A champer becomes visible because he emits a sound

31

4.4. ENEMIES CHAPTER 4. MAZE GAME SYSTEMS

Figure 4.6: Two DumDums standing still because the silent part in
their loop is played

32

CHAPTER 4. MAZE GAME SYSTEMS 4.5. PLAYER INTERACTION

4.5 Player interaction

4.5.1 Laser

The player has a laser that he can shoot to destroy enemies. Am-

munition is limited but can be refilled by reaching a checkpoint. If

the player attempts to shoot without ammunition a failure sound

is played, and a puny particle effect is displayed. If the player

hits an enemy, a death sound and -particle-system are played as

seen in fig. 4.7.

4.5.2 Smoke balls

Smoke emitting balls can be thrown by the player. As shown in

fig. 4.8, smoke balls can reveal where structural objects, like walls,

are in the Unity environment. This is useful because where a wall is

in the unity environment and where it is displayed by the network

might vary considerably in places. Smoke balls can also be used

to uncover the invisible champer as seen in fig. 4.9. More informa-

tion on how the smoke ball works can be found in section 5.4.1.

33

4.5. PLAYER INTERACTION CHAPTER 4. MAZE GAME SYSTEMS

Figure 4.7: The player destroys an enemy with the laser.

34

CHAPTER 4. MAZE GAME SYSTEMS 4.5. PLAYER INTERACTION

Figure 4.8: The player reveals where the walls are in the unity en-
vironment using smoke.

35

4.5. PLAYER INTERACTION CHAPTER 4. MAZE GAME SYSTEMS

Figure 4.9: The player reveals a champer using smoke.

36

5 Neural Network Systems

5.1 Data generation

The first step is to place markers in the environment where obser-

vations should be taken. These markers are scaled Unity cubes

where the volume denotes all the valid observation positions,

while allowed camera rotations are set in the capturing script.

It is possible to group markers and link groups with objects in

the environment. Linked objects are then only visible to the

capturing camera if the camera is placed in a marker that is in

the group the object is linked to.

During data generation, a script moves the camera to a ran-

dom position and rotation. The camera is then programmatically

rendered to a texture and then saved to a file. Camera position-

ing and capturing can be done multiple times per frame to speed

up the generation process. When the file is saved, the position

and rotation where the image was taken is saved in the filename

of the image. Depending on in which unity scene the image was

captured and at what resolution it was set it is sorted automati-

cally into a corresponding folder structure that is created on the

fly.

The data generation process can easily be customized in the

inspector of the capturing script. In a list, entries can be added

that define a capturing resolution and the number of data points

to be captured at that resolution. Once the application is run in

capturing mode, all data points specified in this list are sequen-

tially generated. On completion a notification sound is played

and the environment is automatically shut down.

37

5.2. MODEL CHAPTER 5. NEURAL NETWORK SYSTEMS

In the Maze game all structural objects are cubes, where a

raised cube represents a wall. This makes it easy to find all valid

player positions and generate the markers for the environment

automatically.

5.2 Model

To create the neural network model used in this project the Kears

functional API is used. Keras is the official front end to Tensorflow

and simplifies the creation of neural networks. With the functional

API predefined callable class instances, which represent layers,

can be used to define a models architecture. For this a class of

a layer type is set up and called with the input to the layer. This

then returns the output1 of the layer. The outputs can now be

feed into another layer. After the model has been described in

this manner, Keras can receive optimization parameters e.g. the

loss function and then compile the computation graph.

The model created corresponds to the model described in

section 2.3, with the exception that no latent variables z are used.

As encoder and decoder dense networks are used.

5.2.1 Saving and loading of network

To make it easier to identify and reuse models a simple versioning

system has been developed. If no specific model is specified to

be used, a new one of the specified architecture is created. The

model is then given a unique file name consisting of the following:

date; time; observation environment; name-ID; version; numeric-

ID.

If a request is received to load a specific model, an automatic

1The Keras classes don’t execute statements immediately, but construct a
computation graph for later execution. The output by the layer can be thought
of as a pointer that is resolved later, when the model is executed.

38

CHAPTER 5. NEURAL NETWORK SYSTEMS 5.3. IPC

search is performed for the newest model of the requested id. If

a model is found that is newer than the one specified that model

is automatically loaded instead of the old one. The versioning of

a model is set up so that it increments the version based on the

version of the model that is currently being trained.

Keras is used to automatically save the model during training

in intervals, preventing total data loss in case of a critical system

failure.

5.2.2 Data Preprocessing

First the data is loaded from from disk. Then the data points are

normalized. This means that we make all inputs of the data have

a range between zero and one. This is required for the used ar-

chitecture to enable efficient training. The next step is to create

a pairing of input data and output labels2. This is simply done by

choosing all the inputs and output labels from the same environ-

ment. These pairings constitute the training data for the model.

The output of the model is just a vector, so that we need to rear-

range it into a tensor of the original image dimensions. Then we

can encode the tensor into a JPEG image.

5.3 Inter process communication

Because Python runs outside the Unity environment we need a

way to send the network output to Unity. This is done by using a

python UDP socket to send the JPEG images to a listening UDP

socket in Unity. Because UDP is a connectionless protocol, and

doesn’t give any guaranties that the send data will be received,

it is a very fast way to send the data. The chance of data getting

lost on a local server is very slim. We are also sending a continuous

stream of information so that we don’t have to care if an image

2A label denotes what output we would like to have for a set of inputs.

39

5.4. RENDERING CHAPTER 5. NEURAL NETWORK SYSTEMS

is lost. A new image will be received within a few milliseconds.

5.4 Rendering

Now the data received by the Unity UDP socket gets loaded into

a texture. This texture is then rendered to screen. Because our

simplified model is unable to render nonstatic objects we need

to merge the network output with rendered output from a Unity

camera if we want to use moving objects. For this we change the

material of objects, we don’t want to see in the merged output,

to an unlit material of a specific color, referred from here on as the

key-out color. This can automatically be done when Unity enters

play mode using a script that filters objects based on their layer.

Figure 5.1 shows the application of the material form the editor

perspective.

Now we render a Unity camera and bit blit the image into a

texture using a custom shader that sets all pixels that are equal

to the key-out color to be transparent. Then we apply a pixela-

tion shader to the image to reduce it to the same resolution as

the network output. Finally we blit the pixelated version onto the

screen over the network rendered output (fig. 5.2).

This whole procedure is necessary to hide objects that are blit

onto the network output, when they are behind an object like a

wall in the unity environment.

40

CHAPTER 5. NEURAL NETWORK SYSTEMS 5.4. RENDERING

Figure 5.1: The keyout material is applied to everything that
should not be visible.

41

5.4. RENDERING CHAPTER 5. NEURAL NETWORK SYSTEMS

Figure 5.2: The network output is merged with the output of a
Unity camera.

42

CHAPTER 5. NEURAL NETWORK SYSTEMS 5.4. RENDERING

5.4.1 Smoke ball rendering

The ability of smoke balls to reveal structural environment objects

is created by having the smoke be additive particles. When the

additive particles are rendered in front of objects that have the

key-out color material, the color gets offset slightly so that it is no

longer keyed out by the shader. The objects behind the smoke

appear to the player as flat shaded surfaces with the key-out ma-

terial.

Smoke balls can also be used to reveal the Invisible champer

that is described in section 4.4.2. This works because the champer

is keyed out by the same shader that keys out the environment.

In unity the champer is not transparent but opaque. This means

that if the champer is in front of smoke, he overwrites the smoke

by getting his pixels in the image set to transparent. The player

then sees a cutout in the smoke where only the network output is

visible in the shape of the champer.

43

6 Further work

This chapter presents possible future directions of how the project

can be expanded upon.

6.1 Interactive data generation

One additional layer of interactivity could be created by giving

the player control over how the network trains. Specifically the

player could control the generation of the training data. One

way to achieve this is by allowing the player to traverse the unity

environment and take screenshots of it via a keypress 1. The cap-

tured images would then be used to train a neural network. After

training the player would have to fulfill some task in the environ-

ment, but now he has to use the output of the network he trained

to navigate the environment.

This could be used to create a competitive multiplayer game

where both players first have to train a network and then use the

output of their trained network to beat the other player at some

task that has to be performed in the environment such as col-

lecting objects, catching the other player or shooting the other

player.

1or alternatively we could record what the player sees each moment as a
series of images

44

CHAPTER 6. FURTHER WORK 6.2. NETWORK STATE BLENDING

6.2 Network state blending

One way to make the output of the neural network more inter-

esting is by parameterizing the internal learned parameters. Dur-

ing training they would not have be variable, but after training

the parameters can be manipulated to morph the output of the

neural network. This morphing might be dependent on some dy-

namic gameplay values i.e. if the player shoots the laser the mor-

phing could be set to height value and then gradually lerp back.

6.3 Model improvements

To enable more prototypes, the capability of the GQN network

should be expanded so that it is as capable as the original imple-

mentation. The data generation process and preprocessing are

capable of supplying such an implementation with the required

data. This means that only the architecture of the model needs

to be updated. Updating the network in this would would enable

the development of the prototypes in the following subsections.

6.3.1 Rendering nonstatic objects

After the update the network would be able to directly render

nonstatic objects. To capture the movement of objects, each

frame a new observation from all observation points needs to be

send to the encoder to update the environment representation,

that is then used to render the output. Updating the represen-

tation each frame means that the output of the network would

always represent where objects are in the environment at the

present time.

45

6.3. MODEL IMPROVEMENTS CHAPTER 6. FURTHER WORK

6.3.2 Interactive environment modeling

In this prototype the player manually updates the inputs to the

GQN. For this he places some object in the environment, where

the observations should be taken. To create more gameplay

depth, the number of possible observations that can be taken

per level and the total number of active observations should be

limited in some way. This forces the player to strategize about

when and where to take observations. Placing observations at a

position would make the output of the network more accurate in

the region the capturing object points in.

46

7 Reflection

7.1 Project

The original idea of integrating a GQN into an interactive expe-

rience was only partly successful. The time needed to get ac-

customed with the intricacies of the methods required to use the

GQN to its full potential was greater that the time available for

research in this project. Only a simplified GQN architecture could

be utilized in an interactive prototype.

For the prototypes that where developed, it might be argued

that simpler methods exist that could have been used to achieve

the same design goal. In the maze game a post processing filter

might be applied to make the environment more confounding

instead of using a neural network. This is a valid critique. If one

wants to create a game similar to the maze game and wants

do so quickly one should not use a neural network. However, it is

probably the case that the specific style that was achieved in this

work, using neural networks, is very hard or practically impossible

to recreate using simpler methods.

This work also represents only a first exploration of the possibil-

ity space of how neural networks might be used to process visual

information before it is presented to the player and the improve-

ments described in chapter 6 would make it possible to create

even more unique experiences that utilize the power of the GQN

to its full potential.

The final version of the maze game prototype, can stand on its

own as a playable, challenging game. Only one level is available

in the final quality but with the systems in place, adding more lev-

47

7.2. WORKFLOW EVALUATION CHAPTER 7. REFLECTION

els would be easy. The goal of the maze game prototype of cre-

ating a visually simple but appealing game, where the player has

to use sound to navigate effectively through a maze, avoid ene-

mies and collect checkpoints, all while deciphering the output of

the network has been achieved.

The project greatly improved my understanding about how

neural networks function at the core. The model in the project

uses synthetic data. This enabled me to learn how to construct

a complete pipeline for an unsupervised machine learning sys-

tem. I implemented data generated and preprocessing, created

a simplified version of the GQN architecture and improved my in-

tuitions about how to train neural networks.

7.2 Workflow Evaluation

When working with neural networks it is often necessary to try out

different architectures and parameters for a model that should

perform a specific task. For this it is very useful to have program-

matic utilities, that automatically search the space of parameters

for some time and then returns the best. I realized to late into the

project how useful these utilities would have been. The technical

debt I collected this far into the project was to high and remaining

time of the project to short, so that I decided that the implemen-

tation would not be worth the effort anymore.

Another mistake I made, was to make the model too soon too

complex. Very early on I started to train the model on data of

a camera rotating on multiple axis that produces 64x64—instead

of 32x32—resolution images as training data. Both these things

significantly increased the time necessary to train the network to

a reasonable level. This made iteration time slow. Besides the

training time issue, the implementation of parameterized captur-

ing and higher resolution output took too soon an unnecessarily

large chunk of time out of my schedule, time that would have

48

CHAPTER 7. REFLECTION 7.3. OTHER DIRECTIONS

been better spend improving the existing systems.

Furthermore I sunk some time into researching how to train

neural network models on multiple machines. After 1–2 days of

research I realized, that the endeavor is outside the scope of this

project.

Structuring the project around creating prototypes to evalu-

ate specific ideas worked well. This approach encouraged me

to finding out early on all the ways an idea might break. I knew

that if an idea did not work out I could move on to developing

the next prototype reusing what worked and discarding the rest.

This allowed me to have a short iteration cycle when exploring

directions for the project. A further advantage was that I started

to combine ideas from different prototypes that I would not have

thought about without having the prototypes as reference. An

example is to reuse the object morphing, that was used in a basic

form in the walking simulator prototype, and build a whole proto-

type just around that idea. This prototype then became then the

object morphing prototype.

7.3 Other directions

The GQN is a versatile neural network architecture. There are

many directions, different from the ones explored in this work, one

might want to go. Some that came to my mind are listed below.

7.3.1 GQN and reinforcement learning

One promising way to apply neural networks to interactive envi-

ronments is through reinforcement learning. Reinforcement learn-

ing allows machine learning agents to learn from experience.

They might in the future be used to create more realistic NPCs,

generate content such as levels and music, or to open up the

49

7.3. OTHER DIRECTIONS CHAPTER 7. REFLECTION

world of machine learning to players by letting them train their

own agents. The ability of the GQN to create a compact encod-

ing of an environment can be used in conjunction with reinforce-

ment learning.

Eslami et al. 2018 show that it is possible to utilize the repre-

sentation of a GQN as input to a reinforcement learning algo-

rithm to greatly improve the algorithms data efficiency. This in

turn makes an agent learn faster with fewer data points1 making

it more practical to use reinforcement learning in interactive en-

vironments. In the paper they train an agent to control a robot

arm to reach for a randomly positioned sphere. They also show

that the agent can learn how to control the arm, even when the

camera is positioned at a random position on a sphere around

the robot arm each frame.

The invariance to where the camera is positioned could

potentially be used to give control of the camera to a player.

The player could then, by moving the camera, determine what

kind of observations an agent gets from the environment. This is

interesting both as a means of giving the player control of the

learning process and manipulating inference. During training

the player can focus on different objects the agent can interact

with. This would enable the player to determine which skills the

agent learns by controlling the generation of the training data.

During inference the player can influence the already learned

behavior by changing the inputs the agent receives by moving

the camera e.g. to observe specific objects.

7.3.2 Synthesized game

One might be able to expand the capabilities of the GQN to in-

clude sequence modeling. This would mean, that the model is

able to not only predict the current environment state but also

how this state evolves over time. The model would then be able
1The paper reported that 75% less data was required.

50

CHAPTER 7. REFLECTION 7.3. OTHER DIRECTIONS

to predict how a mobile object would move on screen given only

images of the environment, the coordinates of where the images

where taken, and a reference from which time step each im-

age stems. This might even allow the network to predict game

states such as game over and game state changes caused by

player input similar to what was shown to be possible by Ha and

Schmidhuber 2018. This would allow us to train a model on multi-

ple game environments2 and then smoothly blend between the

different environments, creating a nearly infinite amount of possi-

ble gameplay variations.

As Ha and Schmidhuber 2018 show, this approach might also

be combined with reinforcement learning. An agent could be

trained on many of the generated gameplay variations. This

might result in a more robust agent, which could be useful if the

agent uses a virtual environment to train a task that is supposed

to be executed in the real world. A related approach to making

agents, that train in virtual environments for real world tasks, more

robust is discussed by Peng et al. 2017.

2By a game environment is meant that the environment also has a specific rule
set attached to it.

51

8 Resources

8.1 Software

• Unity3D

• Git

• Visual Studio

• Python

• PyCharm

• Blender

• Krita

8.2 Unity packages

• MK Toon Free (Toon shader)

• Post Processing Stack

• Universal Sound FX

• Standard Assets

• Ultimate Game Music Collection

• Resonance Audio SDK for Unity v1.2.1

52

CHAPTER 8. RESOURCES 8.3. PYTHON PACKAGES

8.3 Python packages

absl-py 0.6.1 altgraph 0.16.1

astor 0.7.1 certifi 2018.10.15

Click 7.0 cycler 0.10.0

Cython 0.29 dist-keras 0.2.1

Flask 1.0.2 future 0.17.1

gast 0.2.0 grpcio 1.12.1

h5py 2.8.0 itsdangerous 1.1.0

Jinja2 2.10 Keras 2.2.4

Keras-Applications 1.0.6 Keras-Preprocessing 1.0.5

keyboard 0.13.2 kiwisolver 1.0.1

macholib 1.11 Markdown 3.0.1

MarkupSafe 1.0 matplotlib 3.0.1

mkl-fft 1.0.6 mkl-random 1.0.1

names 0.3.0 numpy 1.15.3

olefile 0.46 pandas 0.23.4

pefile 2018.8.8 Pillow 5.3.0

pip 10.0.1 protobuf 3.6.1

pygame 1.9.4 PyInstaller 3.4

pyparsing 2.2.2 PyQt5 5.11.2

PyQt5-sip 4.19.12 python-dateutil 2.7.5

pytz 2018.7 pywin32-ctypes 0.2.0

PyYAML 3.13 scipy 1.1.0

setuptools 39.1.0 six 1.11.0

tensorboard 1.11.0 tensorflow 1.11.0

termcolor 1.1.0 Theano 1.0.3

tornado 5.1.1 Werkzeug 0.14.1

wheel 0.32.2 wincertstore 0.2

53

8.4. TEXTURES CHAPTER 8. RESOURCES

8.4 Textures

Texture Source

Given on the 8.12.2018

by Yannick Pawils

Retrieved on the 8.12.2018 from

https://opengameart.org/node/7254

54

Bibliography

Eslami, S M Ali et al. (June 2018). “Neural scene representation

and rendering”. en. In: Science 360.6394, pp. 1204–1210.

Glorot, X and Y Bengio (2010). “Understanding the difficulty of

training deep feedforward neural networks”. In: Proceedings

of the thirteenth international conference.

Ha, David and Jürgen Schmidhuber (Mar. 2018). “World Models”.

In: arXiv: 1803.10122 [cs.LG].

Ioffe, Sergey and Christian Szegedy (Feb. 2015). “Batch Normal-

ization: Accelerating Deep Network Training by Reducing In-

ternal Covariate Shift”. In: arXiv: 1502.03167 [cs.LG].

Peng, Xue Bin et al. (Oct. 2017). “Sim-to-Real Transfer of Robotic

Control with Dynamics Randomization”. In: arXiv: 1710.06537

[cs.RO].

55

List of Figures

2.1 Graphical representation of a neuron with 3 inputs . 5
Own graphic

2.2 Multilayer neural network structure 5
Own graphic

2.3 GQN architecture . 11
own graphic

3.1 The neural network predicts different colors based

on the input data that makes up R. The input pic-

tures are shown to the right. The network gives out-

put even if no images are fed in as seen in the last

image. 14
own graphic

3.2 Training data is being captured in the functional

prototype level. 15
own graphic

3.3 Top down prototype level as seen in the editor 17
own graphic

3.4 In the top down prototype, the network output gets

blurry when the player walks off a platform. 18
own graphic

3.5 Certain objects can only be seen, when the player

stands at certain locations. 19
own graphic

3.6 These are the 4 markers (explained in section 5.1) of

the morphing environment. Overlapping areas are

differently colored. 20
own graphic

3.7 Top down view of the level with only one object ac-

tivated in the middle . 21

56

LIST OF FIGURES LIST OF FIGURES

own graphic

3.8 The 4 differnt objects in the center of the level 22
own graphic

3.9 The center object morphs into a different object

when the player crosses from one marker into another. 23
own graphic

4.1 Checkpoint cuboid varying material color based on

the current sound . 26
own graphic

4.2 Goal varies its material color based on the current

sound . 27
own graphic

4.3 Speeder moves away from his pink spawn point . . . 29
own graphic

4.4 A variation of the speeder that moves faster 30
own graphic

4.5 A champer becomes visible because he emits a

sound . 31
own graphic

4.6 Two DumDums standing still because the silent part

in their loop is played 32
own graphic

4.7 The player destroys an enemy with the laser. 34
own graphic

4.8 The player reveals where the walls are in the unity

environment using smoke. 35
own graphic

4.9 The player reveals a champer using smoke. 36
own graphic

5.1 The keyout material is applied to everything that

should not be visible. 41
own graphic

5.2 The network output is merged with the output of a

Unity camera. 42
own graphic

57

Acknowledgments

I like to thank Yannick Pawils for our daily insightful discussions and

for his feedback which was a great guidance to me.

Also I like to thank my professor Thomas Bremer for the feedback

and guidance he provided.

Furthermore I like to thank Susanne Brandhorst, Jules Pommier and

Matthias Mayer.

58

Statement of Authorship

I hereby declare that I am the sole author of this bachelor thesis

and that I have not used any sources other than those listed in

the bibliography- and resources section. I further declare that I

have not submitted this thesis at any other institution in order to

obtain a degree.

. .
(Place, Date) (Signature)

59

